695
yesterday 594
visitor 1,399,393

Galvanic Bipolar Electrode Arrays with Self-Driven Optical Readouts

?

단축키

Prev이전 문서

Next다음 문서

+ - Up Down Comment Print
?

단축키

Prev이전 문서

Next다음 문서

+ - Up Down Comment Print
Extra Form
Journal ACS Sensors
Author Hyein Lee, Jiwoo Kim, Misol Hwang, and Joohoon Kim
Citation ACS Sens. 2023, 8, 11, 4374–4383
DOI https://doi.org/10.1021/acssensors.3c01807
In this work, we report a bipolar electrode (BPE) array system with self-driven optical readouts of the faradic current flowing through the BPEs. The BPE array system is based on the spontaneous redox reactions that are respectively occurring at opposite poles of the BPEs with appropriate electrocatalysts on the poles; this system is analogous to one consisting of galvanic electrochemical cells. The galvanic BPE array system operates in a self-powered mode that requires there to be neither a direct electrical connection nor external electrical polarization to each BPE. Importantly, the appropriate electrocatalysts on the poles play a critical role in the galvanic BPE array system to induce the spontaneous redox reactions occurring at the poles of BPEs. Moreover, the galvanic BPE array system provides self-driven optical readouts, including fluorometric and colorimetric ones, to report the faradaic current resulting from the spontaneous redox reactions on the BPE poles. Based on the unique benefits that the galvanic BPE array system has over conventional BPEs, we demonstrated the promising potential of galvanic BPE arrays for the simple yet rapid and quantitative screening of electrocatalysts for the oxygen reduction reaction as well as sensitive sensing of H2O2 in parallel.

  1. Hybridization of DNA to bead-immobilized probes confined within a microfluidic channel

    Category-2009 AuthorKim, J.; Heo, J.; Crooks, R. M. JournalLangmuir CitationLangmuir, 2006, 22, 10130-10134 file
    Read More
  2. Transfer of surface polymerase reaction products to a secondary platform with conservation of spatial registration

    Category-2009 AuthorKim, J.; Crooks, R. M. JournalJ. Am. Chem. Soc. CitationJ. Am. Chem. Soc., 2006, 128, 12076-12077 file
    Read More
  3. Replication of DNA microarrays from zip code masters

    Category-2009 AuthorLin, H.; Kim, J.; Sun, L.; Crooks, R. M. JournalJ. Am. Chem. Soc. CitationJ. Am. Chem. Soc., 2006, 128, 3268-3272 file
    Read More
  4. Parallel fabrication of RNA microarrays by mechanical transfer from a DNA master

    Category-2009 AuthorKim, J.; Crooks, R. M. JournalAnal. Chem. CitationAnal. Chem., 2007, 79, 8994-8999 file
    Read More
  5. Replication of DNA microarrays prepared by in situ oligonucleotide polymerization and mechanical transfer.

    Category-2009 AuthorKim, J.; Crooks, R. M. JournalAnal. Chem. CitationAnal. Chem., 2007, 79, 7267-7274 file
    Read More
Board Pagination ‹ Prev 1 2 3 4 5 6 7 8 9 10 ... 16 Next ›
/ 16

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 취소

Designed by sketchbooks.co.kr / sketchbook5 board skin

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5

 
  • 02447 서울특별시 동대문구 경희대로 26(회기동, 경희대학교) 스페이스21 이과대학 803호
    Rm. 102, Humanity bldg., Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Korea
    TEL) Office : +82 2 961 9384 / Lab : + 82 2 961 2294 / Fax : + 82 2 966 3701  |